WHY HEAP LEACH NICKEL LATERITES?

Authors: MARK E SMITH a, b & E ANNE OXLEY a, b, c

a. Alyssum Ventures Ltd, UK
b. Brazilian Nickel Ltd, UK & Brazil
c. Scientific Associate of the Natural History Museum, UK
Contents

- Global Ni Laterite Resources & Production
- Recent Nickel Laterite Projects
 - Ferro Nickel Smelters
 - High Pressure Acid Leach (HPAL/EPAL)
 - Atmospheric Leach (AL)
 - Heap Leach (HL)
- Process Integration
- Sceptic’s Perceived Issues
- The Ideal Ni Heap Leach
 - Typical flow sheet
 - Target resource, mineralogy & siting
- Conclusions
- Q&A
WHY HEAP LEACH NICKEL LATERITES

- Nickel demand has been escalating faster than other metals
- Abundant, principally undeveloped but lower-grade nickel laterite sources
- Declining availability of high-grade sulphides
- Allows processing of entire laterite profile (increased resource utilization)
- Heap leaching has been successful on every other mineral attempted
- Lower Capital Cost, Lower Operating Cost, Lower Risk
WORLD RESOURCES OF NICKEL

World Resources on Land

- Laterite: 72%
- Sulphide: 28%

Primary Nickel Production

- Laterite: 42%
- Sulphide: 58%
PROCESSING NICKEL LATERITES

Current View On Processing Options For Nickel Laterites

- Limonite
- Transition
- Saprolite

(after Elias 2001)
RECENT NICKEL LATERITES PROJECTS

Ferro-nickel smelters

- **Barro Alto, Brazil**
 - $1.9 Billion (36ktpa; $23.90/annual lb of capacity)
 - Add $5.00/lb to account for refurbishing

- **Onca Puma, Brazil**
 - >$3 Billion (50ktpa; $27.17/lb)
 - Excludes refurbishing costs

 Furnace failures on both of above projects → complete rebuilds required (>0.5B). Full operation not until mid 2016 for both projects.

- **Koniambo, New Caledonia**
 - >$6 Billion (60 ktpa; $45.29/lb)

 Very slow ramp up - H1 14 production 4.1kt ($332/lb)
 Full capacity expected 2015

- **Few suitable resources remain**
- **High complexity**
- **High capital intensity**
- **Slow & problematic ramp ups**
RECENT NICKEL LATERITES PROJECTS

High Pressure Acid Leach

➤ VNC Goro, New Caledonia (2010)
 • >$6 billion (60ktpa; $45.29/annual lb of cap)

 Highly Problematic ramp up. Total production < 40kt in 3 years ($204.17/lb)

➤ Ambatovy, Madagascar (2011)
 • >$7 billion (60ktpa; $52.93/lb)

 Slow ramp up. 2013 production 29.25kt ($108.59/lb)

➤ Murrin Murrin, Australia (1999)
 • Australia $1.6 billion (40ktpa; $18.15/lb)

 Slow ramp up, post ramp production ~29.3ktpa ($24.77/lb)

 Added heap leach circuit due to operating problems with HPAL plant

➤ Ravensthorpe, Australia (2008)
 • $3.7 billion (50ktpa; $33.57/lb)

 Only achieved 35% of capacity

 Shut down and sold for 10% of capital cost within months of commissioning

➤ High complexity
➤ High Capital Intensity
➤ Slow problematic ramp ups
➤ Technical & environmental issues
RECENT NICKEL LATERITES PROJECTS

Atmospheric Leach

Forecast lower CapEx than HPAL, but higher than HL, but no successful projects (yet?)

- Weda Bay, Indonesia
 - >$6 billion (50ktpa; $54.44/annual lb of cap)
 - *Investment decision deferred to 2017 (high costs)*

- Dutwa, Tanzania
 - >$2 billion (27ktpa; $33.61/lb)
 - *Company now in liquidation*

- Acoje, Philippines
 - *Project suspended due to poor economics*

- High complexity
- High Capital Intensity (~80% of HPAL)
- Technical & environmental issues
Brazilian Nickel Ltd

RECENT NICKEL LATERITES PROJECTS

Heap Leach

Commercial Operations:
- **Murrin Murrin, Australia** $0.3 bn (9ktpa; $15.11/lb)
 In operation since 2009, Leaching 1 mtpa of ore integrated with HPAL
- **Yuanjiang, China**
 Started heap leach production in 2007

Development Projects:
- **Piauí, Brazil** $450M (22ktpa; $9.28/lb)
- **NiWest, Australia** $400M (14ktpa; $12.75/lb)
- **Colombia** $750M (20ktpa; $17.01/lb)
- **Çaldağ, Turkey** $450M (20ktpa; $10.30/lb)
- **Guatemala** $2,550M (79.5ktpa; $14.55/lb)
- **Pearl, Indonesia** $800M (32ktpa; $11.11/lb)
- **Gag Island, Ind** $800M (27.3ktpa; $13.47/lb)
- **Cleopatra, USA** $475M (21.5kpta; $10.02/lb)
- **Acoje, Philippines** $498M (24.5kpta; $9.22/lb)
- **NTUA, Greece**

Comparison with FeNi, HPAL, AL:
- **Low complexity, lower Capital Intensity**
- **Net power producer after ramp up**
- **Smaller carbon foot print**
Nickel Production Technologies & Cost

<table>
<thead>
<tr>
<th>Process Technology</th>
<th>Typical Capacity ktpa of Ni</th>
<th>CapEx US $/lb annual Ni capacity</th>
<th>OpEx US $/lb Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smelting</td>
<td>18 to 60</td>
<td>24 to 45</td>
<td>2.20 to 4.00</td>
</tr>
<tr>
<td>HPAL / AL</td>
<td>10 to 60</td>
<td>21 to 70+</td>
<td>2.70 to 11.00*</td>
</tr>
<tr>
<td>Heap Leach</td>
<td>10 to 60</td>
<td>9 to 15</td>
<td>2.20 to 3.00</td>
</tr>
</tbody>
</table>

High Opex from HPALs like Ambatovy & Goro which are currently operating at much < nameplate capacity
PROCESS INTEGRATION: HL + FeNi/HPAL

Commercial Operations:
- Murrin Murrin, Australia
 - Status: Operating HPAL & HL
 - Added HL circuit to compensate for poor HPAL performance

Development Projects:
- Cerro Matoso, Colombia
 - Status: Operating Smelter, HL in development
- Guatemala
 - Status: FeNi/HL & HPAL/HL PFS completed
- Brazil
 - Status: FeNi/HL in early study

Possible Ni Laterite Production in 2020
(from Oxley & Barcza, 2012)
PROCESS INTEGRATION: HL + FeNi/HPAL

- **Increased resource utilization:**
 - FeNi or HPAL: 45% to 60% of total contained Ni
 - HL + FeNi/HPAL: 80% to 85% of total contained Ni

- **Circuit efficiency:**
 - Increased average grade to & recovery from FeNi or HPAL
 - Increased Ni production for existing plant
 - Reduced plant cost for greenfield project
 - HL product (NHP) can be added to FeNi furnace
 - Increases furnace efficiency
 - Increases NPV of HL circuit (no discount for selling intermediary product)

- **Economics**
 - Reduced operating cost & energy consumption per tonne of Ni produced
 - Increased cobalt production
 - Can reduce reliance on grid power
 - Can increase Ni grade in FeNi product, increasing market value
 - Reduced carbon emissions & reduced overall environmental impacts
 - Allows commercialization of otherwise uneconomic deposits
SCEPTIC’S PERCEIVED ISSUES

- New Technology
- No commercial operations
- Laterites don’t percolate
- Laterites & Clay
- Low recovery

Knowledge Base
Brazilian Nickel Ltd

KNO仟LEEDGE BASE?

- Piauí Nickel Project
- ENK at Çaldağ & Acoje
- BHPB at Cerro Matoso
- Worldwide Cu & Au Heap Leaching
- Worldwide Ni Laterite Operations
- Standard Equipment & Materials

Çaldağ pilot plant
NEW TECHNOLOGY?

- Used extensively in Au, Ag, Cu, U, Nitrates
- Tested on a demonstration scale by European Nickel, BHP Billiton, Metallica, Vale
- Technically & economically proven
- Successful with every other attempted mineral
NO COMMERCIAL OPERATIONS?

➢ Commercial production:
 ▪ Murrin Murrin (Minara, Australia)
 ▪ Yuanjiang (Yunnan, China)
 ▪ 200+ other minerals successfully operating
LATERITES DON’T PERCOLATE?

- All natural materials percolate
- Similar or better permeability than many copper projects:
 - Spence, El Tesoro, Ivan-Zar (Chile)
 - Tintaya, Cerro Verde (Peru)
- Agglomeration
 - Successfully used with Ni, Au laterites & poorer quality Cu ores
 - Limonite content is key

<table>
<thead>
<tr>
<th>Ore/Location (# of tests)</th>
<th>Ave Perm (cm/s)</th>
</tr>
</thead>
</table>
| **Nickel:**
 - 37 samples from 5 sites | 2x10-3 |
| **Copper (operating heaps):**
 - Low quality ore, Peru (63) | 6x10-4 |
 - Good quality ore, Peru (30) | 2x10-2 |
| **Gold (operating heaps):**
 - Central America, saprolite (10) | 7x10-4 |
 - Brazil, saprolite (13) | 9x10-3 |
Most Ni laterite ores have very low clay mineral content and are amenable to agglomeration.

Australia, operating Ni heap
LOW RECOVERY?

- Heap leaching treats the entire ore body
- No need for selective mining or blending
 - except in rare cases where permeability needs to be managed, such as with very high limonite ore bodies
- Overall resource recovery can be >80%, with 70 to 75% typical
- With Smelting, HPAL & AL:
 - recovery of target ore zone = 85 to >90%
 - total resource recovery = 45 to 60%
TYPICAL Ni HL FLOWSHEETS

Stand alone Heap Leach:

Heap Leach with FeNi plant:
THE IDEAL PROJECT

- Target Resource:
 - Ore grade: >1.0% Ni, >0.05% Co
 - Resource size: >50M tonnes
 - In-hep recovery: >65%
 - Low ratio of limonite to saprolite
 - Local limestone supply

Rocky, high silica deposit
Low limonite
Very High limonite
Mineralogy:
- High SiO2
 - Better heap stability & equipment support
 - Better permeability, agglomerate quality
 - Faster leach kinetics
 - Lower acid consumption
- Low Fe, Mg
 - Lower acid consumption
 - Lower residue production
 - Better agglomerate durability
 - Smaller precipitation & filtration plant
- Clay & Limonite
 - Permeability, agglomerate quality
THE IDEAL PROJECT

Siting Factors:

- Similar criteria to copper heap leach facilities
 - Terrain, climate, water supply, access
 - Stakeholder & regulatory processes

- Transportation
 - In-coming tonnage exceeds out-going

- Power
 - Net producer after ramp-up
CONCLUSIONS

- Lowest Cost Option
- Lowest Risk Option
- Highest Resource Utilisation
- Increased Access to Raw Materials
- Environmental Improvements
Thank you

Questions